Counting the n-Chromos of I. J. Schoenberg
نویسندگان
چکیده
In a series of papers, I. J. Schoenberg [1 3] studied motions inside an n-dimensional cube with side length one, centered at the origin, of a point particle which moves like a billiard ball, that is, the particle always moves along a straight line until it encounters the boundary of the cube, when it is reflected in the usual way. Only non-trivial motions, that is, ones not contained in any hyperplane parallel to a face of the cube, are considered. In the second paper in the series, Schoenberg [2] considered the following: Problem. Find the largest n-dimensional open cube
منابع مشابه
Counting the number of spanning trees of graphs
A spanning tree of graph G is a spanning subgraph of G that is a tree. In this paper, we focus our attention on (n,m) graphs, where m = n, n + 1, n + 2, n+3 and n + 4. We also determine some coefficients of the Laplacian characteristic polynomial of fullerene graphs.
متن کاملApproximation of a generalized Euler-Lagrange type additive mapping on Lie $C^{ast}$-algebras
Using fixed point method, we prove some new stability results for Lie $(alpha,beta,gamma)$-derivations and Lie $C^{ast}$-algebra homomorphisms on Lie $C^{ast}$-algebras associated with the Euler-Lagrange type additive functional equation begin{align*} sum^{n}_{j=1}f{bigg(-r_{j}x_{j}+sum_{1leq i leq n, ineq j}r_{i}x_{i}bigg)}+2sum^{n}_{i=1}r_{i}f(x_{i})=nf{bigg(sum^{n}_{i=1}r_{i}x_{i}bigg)} end{...
متن کاملHistory and Provenance of the “Chinese” Calendar in the Z?j-i ?lkh?n?
This article sheds light upon a “Chinese” calendar described in the Z?j-i ?lkh?n?. In previous studies, some characteristics of the calendar were ascribed to the “Uighurs” However, I will show that it was not originally associated with the Uighur. This “Chinese” calendar was brought to Iran by the Chinese Taoist Fu Mengchi who accompanied his ruler Hülegü. Fu Mengchi informed Nas?r al-D?n T?s? ...
متن کاملCharacterization of $(delta, varepsilon)$-double derivation on rings and algebras
This paper is an attempt to prove the following result:Let $n>1$ be an integer and let $mathcal{R}$ be a $n!$-torsion-free ring with the identity element. Suppose that $d, delta, varepsilon$ are additive mappings satisfyingbegin{equation}d(x^n) = sum^{n}_{j=1}x^{n-j}d(x)x^{j-1}+sum^{n-1}_{j=1}sum^{j}_{i=1}x^{n-1-j}Big(delta(x)x^{j-i}varepsilon(x)+varepsilon(x)x^{j-i}delta(x)Big)x^{i-1}quadend{e...
متن کاملON GRADED LOCAL COHOMOLOGY MODULES DEFINED BY A PAIR OF IDEALS
Let $R = bigoplus_{n in mathbb{N}_{0}} R_{n}$ be a standardgraded ring, $M$ be a finitely generated graded $R$-module and $J$be a homogenous ideal of $R$. In this paper we study the gradedstructure of the $i$-th local cohomology module of $M$ defined by apair of ideals $(R_{+},J)$, i.e. $H^{i}_{R_{+},J}(M)$. Moreprecisely, we discuss finiteness property and vanishing of thegraded components $H^...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Comb. Theory, Ser. A
دوره 79 شماره
صفحات -
تاریخ انتشار 1997